The Main Eigenvalues of a Graph: a Survey

نویسنده

  • Peter Rowlinson
چکیده

Let G be a simple graph with vertex set V (G) = {1, 2, . . . , n} and (0, 1)adjacency matrix A. The eigenvalue μ of A is said to be a main eigenvalue of G if the eigenspace E(μ) is not orthogonal to the all-1 vector j. An eigenvector x is a main eigenvector if xj 6= 0. The main eigenvalues of the connected graphs of order ≤ 5 are listed in [12, Appendix B], and those of all the connected graphs on 6 vertices are given in [10]. In this section we introduce notation and survey the basic results concerning main eigenvalues and main angles (as defined below). In Section 2, we provide a general context for the investigation of the main eigenvectors of G and its complement G. We also extend the notion of star partition to a refined star partition that takes account of main eigenvalues. In Section 3, we discuss graphs with just two main eigenvalues in the context of measures of irregularity of a graph, and we note the connection with harmonic graphs. In Section 4, we deal with a simple instance of graphs with just three main eigenvalues. Let A have spectral decomposition

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Main Eigenvalues of the Undirected Power Graph of a Group

The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...

متن کامل

Eigenvalues of the Cayley Graph of Some Groups with respect to a Normal Subset

‎‎Set X = { M11‎, ‎M12‎, ‎M22‎, ‎M23‎, ‎M24‎, ‎Zn‎, ‎T4n‎, ‎SD8n‎, ‎Sz(q)‎, ‎G2(q)‎, ‎V8n}‎, where M11‎, M12‎, M22‎, ‎M23‎, ‎M24 are Mathieu groups and Zn‎, T4n‎, SD8n‎, ‎Sz(q)‎, G2(q) and V8n denote the cyclic‎, ‎dicyclic‎, ‎semi-dihedral‎, ‎Suzuki‎, ‎Ree and a group of order 8n presented by                                      V8n = < a‎, ‎b | a^{2n} = b^{4} = e‎, ‎ aba = b^{-1}‎, ‎ab^{...

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q

A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.

متن کامل

Laplacian Energy of a Fuzzy Graph

A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...

متن کامل

Finite groups admitting a connected cubic integral bi-Cayley graph

A graph   is called integral if all eigenvalues of its adjacency matrix  are integers.  Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$.  In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007